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We describe a finite Fourier series method for treating the angtilar derivatives ic the angu!a: 
momentum term of the time-dependent SchrGdinger equatio!, ir; spherical coordinates. l‘tie 
method involves a power series expansion of the evolution nperarw and trearment of 
singularities at 8 = 0 by L’Hospital’s rule. It is derronstrated that the method is xcurate across 
the entire spectrum of the angular momentum operator fzr an appropriate sampling grid. 
i 1991 .kademic Pms, Inc 

Considerable progress has been made in solving the time-dependent Schrodinger 
equation numerically in terms of finite Fourier series, implemented through use o.S 
the FFT algorithm [l-7]. One of these methods [ L2 j combines operator splitting 
with a finite Fourier series representation of the wave function. This method Is 
easiest to apply in Cartesian coordinates, where a simple symmetrized opera”ior 

s second-order accuracy with respect to commutation errors, while main- 
taining the unitarity of the evolution operator. 

If one is working in spherical polar coordinates a more complicated operator 
g is required [3] due to the presence of thr-0 b*b ~o~co~~rnut~~g operators in 

amiltonian, namely, the kinetic energy, the angular momentum, and the 
potential energy terms. One way to treat the angular momentum factor in the 
evolution operator split is to express the angular dependence of the wave !unction 
in terms of spherical harmonics. One disadvantage of using spherical harmonics as 
a basis set is that a transformation between the angular momentum values and the 
sampled angles does not exist with numerical efhciency comparabie to that of the 
FKT relationship between sampled momenta and coordinates. This makes .com- 
putarional running time go up as L’, rather than E In ET which would be the sise 

for an FFT transformation where L is the maximum number of angular momew 
turn basis states involved in the calculation. En this article we describe a metho :‘Ejr 
implementing a solution to the Schrodinger equation in polar coordinates. b;~ use 
of a finite Fourier series in the polar angle, which is both accurate and eEcien: and 
has the added appeal of simplicity. 
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Recently a simple but accurate method has been reported [Sl for solving the 
paraxial wave equa.tion in cylindrical polar coordinates in terms of a finite Fourier 
series. The method is based on a fourth-order Taylor series expansion of the evoiu- 
tion operator with derivatives evaluated by term by term differentiation of a finit: 
Fourier series. Terms that are singular at I’ = 0 are treated by applying L’ 
rule. Although the Taylor series algorithm is not formally unitary, deviations of :he 
fieid norm from the initial value are insignificant as !ong as axial propagation steps 
are small enough to maintain stability and accuracy of the soiuiion. This method 
avoids altogether the difficulties associated with the numerical appkation of 
Fourier--Bessel transforms [9]. 

in -this article we show that the same procedure is appiicabie to the angu1a.r 
momentum term in the Schrodinger equation in polar coordinates. The method 
that we discuss here can be easily generalized to other curvilinear coordinate 
systems and should greatly facilitate wave-packet anaiysis in higher dimensional 
problems. 

2. SCHR~DINGER EQUATION IN SPHERICAL POLAR COORDINATES 

The Schrodinger equation in sphericai polar coordinates can be written in atomic 
units as 

where @ = rY is the reduced wave function and 

We wish to find a solution to Eq. (2) in the form of a two-dimensionai Fourier 
series in r and 9. 

In its P-dependence @(r. 0) is continued from positive to negative values of Y. The 
r-dependence has already been discussed in Ref. [3] and will not be considered 
further here. Instead we focus our attention on the d-dependence. If WC suppress the 
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radial derivatives from the Hamiltonian in Eq. (2) the Schrodinger equation 
becomes 

(.4) 

where I= pr2 is the moment of inertia. 
We shall look for a solution to Eq. (4) in the band-limited Fourier series form, 

valid on the interval -n: < 8 < rr, 

x/2 

Q-Y@= 1 @, eins. (5) 
n= -.V,fZfl 

In general, the evaluation of the coefficients in Eq. (5) by an FFT will require N 
sampling points, and the finite Fourier series in Eq. (5) will be an exact representa- 
tion for any function that can be represented as a sum of associated Legendre 
functions up to and including order N/2, i.e., for 

v;2 - 1 
Q(6)= c afi’Pfi’(cos e). (6) 

tZ=O 

This follows from the fact that Pz can be expressed as 

qcos 0) = f a:! cos n’8, for m even; 
ii’=0 

Pz(cos 0) = i b:! sin n’O, 
n’=O 

for m odd. 

If Eq. (4) is written as 

i-g= Ho@, 

(7) 

(8) 

the solution can be expressed formally to fourth order as 

@(dr) = eCiHodr@(0) 

(9) 

The use of the fourth-order expansion (9) implies that all errors including com- 
mutation errors are no greater than fifth order. The split operator method, on the 
other hand, involves a third-order commutation error. 
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If we express the solution to Eq. (4) as the band-limited Fourier series (S), the 
derivatives in Eqs. (4) and (9) can be evaluated by term by term differentiation of 
Eq. (5 ) to give 

iJ2@ .‘\‘Y 2 

-= 
28’ 

c in8 @,(irz)’ e . 
n=-!V,2+1 

To evaluate the derivatives in Eqs. (10) and (II) requires one FFT pair for each 
derivative. Terms on the right-hand side of Eq. (4) that are singular at (I = 0 can be 
evaluated by L’Hospital’s rule to give 

These values are available from the computed array corresponding to Eq. (I I ). 
The Taylor series (9) is equivalent to a fourth-order RungeeKutta scheme for 

a time-independent potential. The present scheme can be generalized to tme- 
dependent potentials if one applies the standard Runge-Kurta scheme as used in 
the solution of ordinary differential equations [lo]. As in the Taylor series method. 
four separate function evaluations of the right-hand side of Eq. (4) will be required. 

Tal-Ezer and Kosloff [ 1 l] have developed a scheme, applicable strictly to time 
independent potentials, whereby the evolution operator is represented by a fini:e 
sum of complex Ghebychev polynomials. At a cost of some additionai storage 
requirements this scheme represents the optimum polynomial approximation of a 
given order to the evolution operator. For problems in which one is interested in 
evolving an initial state to some finite state after a significant elapse of time the 
Tal-Ezer-Kosloff method is the preferred method because of its superior accuracy 
and efficiency, measured by the number of required Hamiltonian operations. The 
Taylor series-Runge-Kutta scheme, on the other hand, represents a simple but 
accurate scheme to be used for marching a solution to a final state through a 
sequence of intermediate sampling times, and it is applicable to both time- 

independent as well as time-dependent potentials with comparable accuracy. 

3. COMPUTATION OF EIGENVALUES 

Eigenvalues can be computed from wave packet evolution by first computing the 
correlation function [ 1 ] 
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Y(t)= (@(OjI@(fj) 

=27-l ! dd sin &D*(e, 0) @(e, f). 
0 

Substitution from Eq. (5) into Eq. (13) gives 

N :2 N,‘2 

P(t)= -ilr 1 c @,T,(O) @n(f) 
m= -‘v;2+1 n= -.v)r+ 1 

(13) 

(14) 

where 

1 
n ( 1 1 

n-m+1-n-m-l ’ 
a > 

n - m even; 

n,n = (15) 
0, n-m odd. 

The double summation in Eq. (14) can be reduced to the single summation 

A.:2 

P(t)= c A,@,,(t), (16) 
n=--.vt2+1 

where the coeffkients 

are compured once at the beginning of the run. The wave function norm is 
computed in similar fashion from the following expression: 

~(@(r)~@(t))~‘=2a~~ desinB@*(t)@(t) 
0 

s, 2 Nl2 

= c c @ifI(t) @n(t)%,,. (18) 
m= --.\‘.‘Zfl ,I= -lv;2+1 

Expressions (14) and (18) are exact for the representation (5) and thus avoid the 
errors that would be incurred by performing the corresponding integrations 
numerically in direct space. 
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The energy spectrum corresponding to the initial wave packet is constructed by 
evaiuating numerically the Fourier transform 

where N.(F) is the Hanning window function. 

Equation 119) takes the form 

where la,,l’ is the weight of the state IE,,) in the initia: wave packet. and the iine- 
shape function iP(E-E,,) is defined by 

The eigenvalues can be determined to high accuracy from the calculated spcrtrum 
i 19 j using the line-shape fitting technique described in Refs. [ 2-3 7. 

4. SOLUTION FOR A RIGID k3TOR 

To illustrate the method and its accuracy we consider first the Schrodinger equa- 
tion for a rigid three-dimensional rotor with moment of inertia I= 4. Setting 
k’(8) = 0 in Eq. (4), we obtain 

As a test of the accuracy of the method, we have computed all eigenvalues for 
Eq. (23) obtainable from N sampled points. Because the stationary-state eigenfunc- 
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FIG. 1. Wave packets for a rigid rotor. The initial wave packet and the wave packet at t = 6.5 super- 
posed. 

tions are the Legendre polynomials P,(cos /!I), an initial state spanning the full 
bandwidth allowed by the sampling grid is represented by the linear combination 

dye, 0) = C P,,(cos ej. (24) 
II =o 

We have propagated the initial state (24) using N= 64 grid points for 216 steps and 
a step size dt =O.OOOl. For this time step the normalization (18) is preserved to 

9 -2 
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5 
2 loa 

!J g 10 -6 

5 
g loa 
0 
;lo-‘O 

ti 810 -12 ._I 
fn 
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FIG. 2. Bandlimited energy spectrum for a rigid rotor. Angular sampling grid has 64 points. Position 
of peaks gives seven significant figure accuracy for eigenvalues of the 32 states. 



TREATMENT OF ANGULAR DERIVATIVES 3 s a 

TABLE I 

Computed Eigensalues for the Rigid Rotor Compared with Ana!yticaf Values 

E ( computed 1 E (analytical) 1 E (compuied i 

6.1278667 x 10 -I) 0 cl 271.9999925 
1.9999993 1 1 3060000026 
6.0000058 6 2 3-!2.GOOOG74 

1?.0000978 12 3 379.999?817 
L9.9999573 20 1 419.9999914 
3G.OOGG179 30 5 J61.9999853 
AL.9999673 42 6 505.9999691 
56,0000327 56 7 551.9999541 
72.0000290 72 8 599.9999461 
89.9999874 90 9 649.9999027 

110.0000119 110 10 701.9998571 
132.0000191 132 11 755.9997Xji 
t 55.9999996 156 12 811.9997089 
181.9999952 182 13 869.9995676 
210.0000010 210 14 929.9994230 
240.0000028 210 15 991.9991899 

E ( anaiytica! ) 

177 
306 
342 
3% 
420 
162 
506 
5.52 
600 
650 
702. 
756 
8iZ 
570 
9x 
935 

h’oie, Parameters are given in the text. All eigenvalues except the first three were generated from a 
single run using Eq. (24) as the initial condition. The first three were not me2 isolated in the generated 
spectrum and were calculated in separate runs. 

better than one part in 10’. No attempt was made, however, to o 
step with respect to accuracy and efficiency. 

The initial wave packet and the wave packet at the end of the run are superposed 
in Fig. 1. The initial spike is due to the perfect phasing of ali the component sraizs. 
The dephasing of the state amplitudes results in the spreading of the wave packers 
at late times. 

The energy spectrum of the wave packet is shown in Fig. 2 and the 32 compnted 
eigenvalues are listed and compared with their anaiytic counterparts, i.e., i (/+ Y ;. 
in Table I. It is seen from Table I that eigenvalues are accurate, typically, to sev 
significant figures. These results demonstrate the accuracy of the method across t 
entire spectrum of the angular momentum operator. 

5. SOLUTION FOR A RIGID DIPOLE IN A CONSTANT FIELD 

A second application of the method is to a rigid dipole in a constant electric fi.eid. 
For an electric field of magnitude E oriented along the z-axis and a dipole of 
strength p, V(Q) takes the form 

V(O) = -pE cos 8. 
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60.0 120.0 180.0 

EI (degrees) 

FIG. 3. Wave packets for a rigid rotor in a uniform electric field. The initial wave packet and the 
wave packet at f = 13.20 superposed. 

TABLE IIa 

Eigenvalues for Rigid Dipole in a Constant Electric Field 

E (spectral) E (variational) E (perturbation) I 

-2.36561'"' -2.3656 0 
2.63875 2.6388 1 
6.64546 6.6455 7 

12.28624 12.286 3 

20.16352"' 20.164 4 
30.10714 30.107 5 

42.07587 42.076 42.076 6 

56.05660 56.057 56.057 7 

72.04389 72.044 8 
90.0350 90.035 9 

110.0287 110.026 10 
132.0239 132.024 I1 
156.0202 156.020 12 
182.0173 182.017 13 
210.0149 210.015 14 
240.0131 240.013 15 

Note. Comparison between spectral and variational methods and second-order 
perturbation theory. The latter two are provided by Ref. [12]. The value I, when it 
appears, designates the /-value of the unperturbed state. c) = 5.0. 

‘(1’ 64 sample points; dr = 0.0008; 32K time steps; Q(O) = P,, 
‘6J 64 sample points; dt =0.0002; 64K time steps; @J(O) = PO - P,,. 
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TABLE Ilb 

Eigenvalues for Rigid Dipole in Constant Electric Field 

E (spectrai! E (variational) E (perturbation) i 

-6.04507” - 6.045 1 0 
7.81936 7.8793 2 

13.23939 13.239 3 
20.6108 1 20.67 1 4 
30.43138 30.431 5 
42.3w73 42.305 32.303 6 
56227i5 56.227 56.226 7 
77.17577 72.175 s 
90.13025 90.110 9 

113.11452 !10.114 10 
132.09551 :3x094 II 
156.08054 156.08i 1’ 
182.06906 182.064 13 
21N5984 210.060 14 
240.05213 240.052 15 

Xc>;l’l Comparison between spectral and variational methods and second-order 
perturbation theory. The latter two are provided by Ref. [l?]. The vaiile 1. when it 
appears, designates the I-value of the unperturbed state. o = !O.O. 

IE’ 61 samp!e points: At =0.00025: 64K timesteps: @CC) = x:5, P,jcos 81. 

TABLE IIc 

Eigenvalues for Rigid Dipole in Constant 
Electric Field 

E (spectral) E (variarionai i 

-40.50678'"' 

-21.56488 
3.77155 

12.72524 
27.68132 
40.56613 
50.98419 
62.22239 
76.60073 

-40.507 
-21.565 

3.7716 
12.125 
27.68 1 
40.566 
50.954 
62.223 

~Voie. Comparison between spectrai an& 
variational methods. The latter is provided by 
Ref. [12j. 0=50.0. 

‘di 64 sample points; Jr =O.OOO?; 64 time 
steps: @‘coj=x;_, P,(cos 81. 
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TABLE Ild 

Eigenvalues for Rigid Dipole in Constant 
Electric Field 

E (spectral) E (variational) 

-468.87905"' 
- 406.65008 
- 345.45951 
- 285.33526 

- 26.30840 
- 168.41269 
-111.68619 

-56.17044 
-- 1.91267 
51.03190 

102.60269 
152.72730 
201.32296 

m-468.83 
-- 406.65 
-- 345.46 
- 285.34 
- 226.3 1 
- 168.41 
-111.69 

-56.170 

NOM. Comparison between spectral and 
variational methods. The latter is provided by 
Ref. [ 121. o = 500.0. 

‘*’ 64 sample points, dt=0.0002, 64K time 
steps; Q(O) = P,(cos 0) + P,(cos @). 

For I= l/2 the Schrodinger equation can be written 

.a@ lx= - 
[ 
a20 ~+COttE- m2 

-4 -wcOseQ, ae sin2 0 1 (26) 

where o = pE. 
Computations were performed for m = 0 using an initial state consisting of linear 

combinations of Legendre polynomials. Energy eigenvalues calculated by the spec- 
tral method are presented in Tables IIa-IId, where they are compared with results 
obtained using a variational technique and perturbation theory, when applicable. 
The latter results are the work of von Meyenn [12]. Whenever possible the eigen- 
value is designated by the Z-value corresponding to the unperturbed state. 

There is agreement with Ref. [12] to all live significant figures quoted in the 
reference in nearly every case. The eigenvalues unaccompanied by values from 
Ref. [12] represent additional eigenvalues determined from the input wave packets 
without further computational effort. Because this application was intended as an 
illustration, no attempt has been made to optimize with respect to either the 
number of grid points or the time step, 

Figure 3 shows the initial and final probability distributions for o = 5.0 and for 
the initial wave packet composed of P, through Pr,, taken with equal amplitudes. 
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6. CONCLUSION 

We have demonstrated a finite Fourier series method for treating the angular 
derivatives in the Schriidinger equation in spherica coordinates that is accurate 
across the entire spectrum of the angular momentum operator, This implies that 
any bandlimited solution of the Schrodinger equation can be determined to high 
accuracy for an appropriate sampling grid and that there should be no advantage 
as far as accuracy is concerned to using spherical harmonics as a basis. The method 
should make it possible to apply the full accuracy, efficiency, and power of the Enite 
Fourier series method to wave packet propagation in a variety of geometries xrd 
dimensions. 
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