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We describe a finite Fourier series method for treating the angular derivatives ir the angular
momentum term of the time-dependent Schrédinger equatior in spherical coorcinates. The
method involves a power series expansion of the evolution operator and treatment of
singularities at 8 =0 by L’Hospital’s rule. It is demonstrated that the method is accurale across
the entire spectrum of the angular momentum operator for an appropriate sampling grid.
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1. INTRODUCTION

Considerable progress has been made in solving the time-dependent Schrédinger
equation numerically in terms of finite Fourier series, implemented through use of
the FET algorithm [1-77. One of these methods [1--27] combines operator splitting
with a finite Fourier series representation of the wave function. This methed is
easiest to apply in Cartesian coordinates, where a simple symmetrized operaicr
spiit affords second-order accuracy with respect to commutation errors, while main-
taining the unitarity of the evolution operator.

If one is working in spherical polar coordinates a more complicated operator
splitting is required [3] due to the presence of three noncommuting operators in
the Hamiltonian, namely, the kinetic energy, the angular momentum, and the
potential energy terms. One way to treat the angular momentum factor in the
evolution operator split is to express the angular dependence of the wave function
in terms of spherical harmonics. One disadvantage of using spherical harmonics as
a basis sct is that a transformation between the angular momentum values and the
sampled angles does not exist with numerical efficiency comparabie 1o that of the
FFT relationship between sampled momenta and coordinates. This makes com-
putational running time go up as L?, rather than L in Z, which would be the case
for an FFT transformation, where L is the maximum number of angular momen-
tum basis states involved in the calculation. In this article we describe a method for
implementing a solution to the Schrodinger equation in polar coordinaies. by uze
of a finite Fourier series in the polar angle, which is both accurate and efficient and
has the added appeal of simplicity.
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TREATMENT OF ANGULAR DERIVATIVES
Recently a simple but accurate method has been reported [87 for solving the
paraxial wave equation in cylindrical polar coordinates in terms of a finite Fourier
series. The method is based on a fourth-order Taylor series expansion of the evolu-
tion operator with derivatives evaluated by term by term differentiation of a fimite
Fourier series. Terms that are singular at » =0 are treated by applying L'Hospital’s
rule. Although the Taylor series algorithm is not formally unitary, deviations of the
fieid norm from the initial value are insignificant as long as axial propagation steps
are small enough to maintain stability and accuracy of the solution. This method
avoids altogether the difficulties associated with the numerical application of
Fourier-Bessel transforms [9].
in this article we show that the same procedure is appiicable to the angular
momenium term in the Schrodinger equation in polar coordinates. The method
that we discuss here can be easily generalized io other curvilinear coordinaie
svstemns and should greatly facilitate wave-packet analysis in higher dimensional
problems.

2. SCHRODINGER EQUATION IN SPHERICAL POLAR COORDINATES

The Schrodinger equation in spherical polar coordinates can be written in atomic
units as

1 ¢ L-
L
2u5r‘+2r* r-8)
{2
) it /. &N m?
D= —— Z(sing o)+
el k) Ry

We wish 1o find a solution to Eq.(2) in the form of a two-dimensional Fourier
series in r and 8.

M2 N2
&(r,0)= Y Y @,.exp{ilmmr/Ry+uf]} (3
m=—M2+1 n=—N2+1

In its r-dependence &(r, 6) is continued from positive to negative values of r. The
r-dependence has already been discussed in Ref [3] and will not be considered
further here. Instead we focus our attention on the 9-dependence. If we suppress the
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radial derivatives from the Hamiltonian in Eq. (2), the Schrodinger equation

becomes
0D 1 1 ¢ oD m?
e L L 0 e a0y M 0\ D
"o 21 [sin 6 00 <sm g 66) sin” ¢] 70
1 [é*d od  m?

I WM pliv 4
2[[802+C0t 20 sin29®]+ 0)e, )

where I= ur? is the moment of inertia.
We shall look for a solution to Eq. (4) in the band-limited Fourier series form,
valid on the interval —n <0<,
N72 )
o(0)= ) D, e, (5)

n=—N/2+1

In general, the evaluation of the coefficients in Eq. (5) by an FFT will require N
sampling points, and the finite Fourier series in Eq. (5) will be an exact representa-
tion for any function that can be represented as a sum of associated Legendre
functions up to and including order N/2, ie., for

N/2—1
D(0)= ) aP7(cosb). (6)

n=0

This follows from the fact that P can be expressed as

Pr(cos @)=Y alcosn'd, for meven;
n=0
(7

Pl(cosB)= > b7 sinn'o, for modd.
n' =0
If Eq. (4) is written as
0P
IEZ Hy®, (8)

the solution can be expressed formally to fourth order as

G(Ar) = e~ T 41(0)
;

1
:{1—iAtH9—§(At)2 HZ"+6

(4t H? +512 (At H + 0((Az)5)} ®(0).
(9)

The use of the fourth-order expansion (9) implies that all errors including com-
mutation errors are no greater than fifth order. The split operator method, on the
other hand, involves a third-order commutation error.
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If we express the solution to Eq. (4) as the band-limited Fourier series (5}, the
derivatives in Egs. (4) and (9) can be evaluated by term by term differentiation of
Eq. {5) to give

a¢ N2

—= @, (in)e™? Sy
69 n= 427\‘;'7 1 " ‘ /
ang A2
Ty = Y @ (in)* ™? (11
co A= —N2+1

To evaluate the derivatives in Egs. (10) and (11} requires one FFT pair for sach
derivative. Terms on the right-hand side of Eq. (4) that are singular at § =0 can be
evaluated by L'Hospital’s rule to give

Iales] AP
1i t—=| — , {iZa)
o Y 20 (ael)M i
im m* & m? [ O*D (176
1 - = — — . 120}
40 sin’ @ 2\80% ),_, R

These values are available from the computed array corresponding to Eq. {11}
The Taylor series (9) is equivalent to a fourth-order Runge-Kuita scheme jor
a time-independent potential. The present scheme can be generalized to time-
dependent potentials if one applies the standard Runge-Kurta scheme as used in
the solution of ordinary differential equations [ 10]. As in the Taylor series method,
four separate function evaluations of the right-hand side of Eq. (4} will be required.
Tal-Ezer and Kosloff [11] have developed a scheme, applicable strictly ¢ time
independent potentials, whereby the evolution operator is represented by a finite
sum of complex Chebychev polynomials. At & cost of some additional storages
requirements this scheme represents the optimum pelynomial approximation of a
given order to the evolution operator. For problems in which one is interested in
evolving an initial state to some finite state after a significant elapse of time the
Tal-Ezer-Kosloff method is the preferred method because of its superior accuracy
and efficiency, measured by the number of required Hamiltonian operations. The
Taylor series-Runge-Kutta scheme, on the other hand, represents a simple but
accurate scheme to be used for marching a solution to a final state through a
sequence of intermediate sampling times, and it is applicable to both time-
independent as well as time-dependent potentials with comparable accuracy.

3. CoMPUTATION OF EIGENVALUES

Eigenvalues can be computed from wave packet evolution by first computing the
correlation function [1]
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P(1)=D(0)|D(¢) >

—2n j"de sin §6*(0, 0) (6, 1). (13)
0

Substitution from Eq. (5) into Eq. (13) gives

N2 N/2
P(t)y=—in ) Y DHO0) D, (1)
m=—N24+1 n=—-N2+1

bid
Xf [ez(n~m+I)H_et(n—mfl)ﬂ] dg
]

N;2 Ni2
= Z Z ¢::I(O) <15,,(r)a,,,,,, (14)
m=—N2+1 n=—N:2+1

where

1 1
T — , n—meven;
(n—m—i—l n—m——l) |
anm: (15)

0, n—m odd.

The double summation in Eq. (14) can be reduced to the single summation

N2
P(r)= Y  A,D,1) (16)
n=—N;2+1
where the coefficients
N2
A,= Y  a,P%0) (17)

m=—-N2+1

are compured once at the beginning of the run. The wave function norm is
computed in similar fashion from the following expression:

(D) B(1)>|? =27 f: d0 sin 00*(1) d(1)

N2 N2
= 2 Y D) D(1)a,,. (18)
m=—N2+1 n=-—N2+1

Expressions (14) and (18) are exact for the representation (5) and thus avoid the
errors that would be incurred by performing the corresponding integrations
numerically in direct space.
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The energy spectrum corresponding to the initial wave packer is constructed ov

evaluating numerically the Fourier transform

1 N
9(5)—?‘ dt wit) e P{1). (15}
where w{r) is the Hanning window function
w(ry=1-—cos(2ny; T) f O0<i<T. (20
Equation {19) takes the form
(21

E)_Zlan|~g(E ”:’

is the weight of the state |E, ) in the initial wave packet. and the line-

where |a,|” i
shape function ¥{F— E,) is defined by

1
Q(E-—E”)E}JO

HKE—E.)T 1

dte™E B (1)

e
- HE—-E,)
E—EnT—22] _ 1]

l rei[(EfEn)T-r'lrr] _ 1 e
X — .
v EoE)Tia T E_ET 3 |

cy from the calculated specirum

The eigenvalues can be determined to high accuracy
{1%) using the line-shape fitting technique described in Refs. [1-3].

4. SOLUTION FOR A RiGID RoTOoR

To illustrate the method and its accuracy we consider first the Schrédinger squa-
B i i L Getts

e = 3. Setting

tion for a rigid three-dimensional rotor with moment of inertia /=
V(0y=0 in Eq. (4). we obtain

od i[1 ( @) sma ]

ot 2I|sin@ae
i]ép od  wmi? 1
71[ 0z TN A a0 Y *

As a test of the accuracy of the method, we have computed all eigenvalues for
Eq. (23) obtainable from N sampled points. Because the stationary-state eigenfunc-

38193 2-9
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Fi6. 1. Wave packets for a rigid rotor. The initial wave packet and the wave packet at 1 =6.5 super-
posed.

tions are the Legendre polynomials P,(cos #), an initial state spanning the full
bandwidth allowed by the sampling grid is represented by the linear combination

N2 1
@(0,0)= > P,(cos8). (24)

n=0
We have propagated the initial state (24) using N =64 grid points for 2'° steps and
a step size 4t=0.0001. For this time step the normalization (18) is preserved to
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Fig. 2. Bandlimited energy spectrum for a rigid rotor. Angular sampling grid has 64 points. Position
of peaks gives seven significant figure accuracy for eigenvalues of the 32 states.
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TABLE [

Computed Eigenvalues for the Rigid Rotor Compared with Analytical Values

E (computed) E (analytical) { E (computed} E (analytical) !
6.1278667 x 10 ~° 0 0 271.9995925 272 t5
1.99999%3 2 1 306 0000026 506 17
6.0000058 6 2 342.06000074 342 12
12.0000978 12 3 379.9999817 386 i5
£9.9999573 20 4 419.9996914 420 25
30.0000179 30 5 461.9999853 462 23
41.9999€73 42 6 505.99%9691 506 2
56.0000327 56 7 551.9999541 352 23
72.0000290 72 8 599.999%461 500 13
89.9999874 90 9 649.9995027 £50 25
110.0000119 110 10 701.9998571 702 26
1320000191 132 It 7559997851 756 27
153.9999996 156 12 811.9997089 812 28
181.9999952 182 13 869.9995676 870 79
210.0000010 210 14 626.9994230 936 3%
240.0000028 240 15 991.9991899 992 3

Noie. Parameters are given in the text. All eigenvalues except the first three were generated from a
single run using Eq. (24) as the initial condition. The first three were not weil isolated in the generated
spectrum and were calculated in separate runs.

better than one part in 10°. No attempt was made, however, to optimize the time
step with respect to accuracy and efficiency.

The initial wave packet and the wave packet at the end of the run are superposed
in Fig. 1. The initial spike is due to the perfect phasing of all the component siates.
The dephasing of the state amplitudes results in the spreading of the wave packets
at late times.

The energy spectrum of the wave packet is shown in Fig. 2 and the 32 computed
cigenvalues are listed and compared with their analytic counterparts, ie, { {{+ 1}
in Table 1. It is seen from Table I that eigenvalues are accurate, typically, to seven
significant figures. These results demonstrate the accuracy of the method across the
entire spectrum of the angular momentum operator.

5. SOLUTION FOR A RIGID DIPOLE IN A CONSTANT FIELD

A second application of the method is to a rigid dipole in a constant electric fieid.
For an electric field of magnitude E oriented along the z-axis and a dipole of
strength p, ¥{8) takes the form

V{6)= —pE cos 6.

PN
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FI1G. 3. Wave packets for a rigid rotor in a uniform electric field. The initial wave packet and the
wave packet at 7= 13.20 superposed.

TABLE Ila

Eigenvalues for Rigid Dipole in a Constant Electric Field

E (spectral) E (variational ) E (perturbation) /
—2.36561' —2.3656 0
2.63875 2.6388 1
6.64546 6.6455 2
12.28624 12.286 3
20.16352t4! 20.164 4
30.10714 30.107 5
42.07587 42.076 42.076 6
56.05660 56.057 56.057 7
72.04389 72.044 8
90.0350 90.035 9
110.0287 110.026 10
132.0239 132.024 11
156.0202 156.020 12
182.0173 182.017 13
210.0149 210.015 14
240.0131 240.013 15

Note. Comparison between spectral and variational methods and second-order
perturbation theory. The latter two are provided by Ref. [12]. The value /, when it
appears, designates the /-value of the unperturbed state. @ = 5.0.

t9) 64 sample points; 4= 0.0008; 32K time steps; &(0)= P,.

) 64 sample points; 4:=0.0002; 64K time steps; H(0) = Po— P,s.
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TABLE IIb

Eigenvalues for Rigid Dipole in Constant Electric Field

£ (spectral) E (variational) E {perturbation) !
—06.04507' —6.0451 0
7.87936 7.8793 2
13.23939 13.239 3
20.67081 20.671 4
30.43238 30.432 5
42.30473 42.305 42.303 6
5622715 56.227 56.226 7
7217577 72.175 8
90.140290 90.140 9
118.11452 110.114 10
£32.09551 132095 1t
156.08054 156.081 2
182.06906 182.065 13
21005984 210,060 i4
240.65223 240.052 5

Note. Comparison between spectral and variational methods and second-order
perturbation theory. The latter two are provided by Ref [127]. Tue value /, when it
appears, designates the /-value of the unperturbed state. @ =10.0.

164 sample points; 4t =0.00025; 64K timesteps: @(C}=3"1° . P (cos #).

n=0*

TABLE Iic

Eigenvalues for Rigid Dipole in Constant
Electric Field

E (spectral) E (variational;
—40.50678'" —40.567
—21.56488 —21.565

3.77155 3.7716
12.72524 12.725
27.68132 27.681
40.56613 40.566
50.98419 50.984
62.22239 62.223
76.60073

Note. Comparison between spectrai and
variational methods. The latter is provided by
Ref. [12]. w=500.

“164 sample points; Jr=90.0002; 64 time
steps; P(0)=32_, P,lcos B).
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TABLE I1d

Eigenvalues for Rigid Dipole in Constant
Electric Field

E (spectral) E (variational)
—468.87905' —468.83
—406.65008 —-406.65
—345.45951 —345.46
—285.33526 —285.34

—26.30840 —226.31
—168.41269 —168.41
—111.68619 —111.69

—56.17044 —56.170

—1.91267

51.03190
102.60269
152.72730
201.32296

Note. Comparison between spectral and
variational methods. The latter is provided by
Ref. [12]. w = 500.0.

)64 sample points, 4r=0.0002, 64K time
steps; @(0) = Py(cos 8) + P (cos ).

For I'=1/2 the Schrodinger equation can be written

ob RO od  m?
iE:—[FOT+COtHEH_—S_irF—H¢]_wCOSB¢’ (26)
where w = pE.

Computations were performed for m =0 using an initial state consisting of linear
combinations of Legendre polynomials. Energy eigenvalues calculated by the spec-
tral method are presented in Tables IIa-IId, where they are compared with results
obtained using a variational technique and perturbation theory, when applicable.
The latter results are the work of von Meyenn [127]. Whenever possible the eigen-
value is designated by the /-value corresponding to the unperturbed state.

There is agreement with Ref [12] to all five significant figures quoted in the
reference in nearly every case. The eigenvalues unaccompanied by values from
Ref. [12] represent additional eigenvalues determined from the input wave packets
without further computational effort. Because this application was intended as an
illustration, no attempt has been made to optimize with respect to either the
number of grid points or the time step.

Figure 3 shows the initial and final probability distributions for @ = 5.0 and for
the initial wave packet composed of P, through P,s, taken with equal amplitudes.
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6. CONCLUSION

We have demonstrated a finite Fourier series method for treating the angular
derivatives in the Schrédinger equation in spherical coordinates that is accurate
across the entire spectrum of the angular momentum operator. This implies that
any bandlimited solution of the Schrodinger equation can be determined to high
accuracy for an approprlate sampling grid and that there should be no advantage
as far as accuracy is concerned to using spherical harmormnics as a basis. The method
should make it possible to apply the full accuracy, efficiency, and power of the finite
Fourier series method to wave packet propagation in a variety of geometries and
dimensions.
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